4100 AWL/Thomas_ch12p848-905

ثبت نشده
چکیده

Some of the things we measure are determined simply by their magnitudes. To record mass, length, or time, for example, we need only write down a number and name an appropriate unit of measure. We need more information to describe a force, displacement, or velocity. To describe a force, we need to record the direction in which it acts as well as how large it is. To describe a body’s displacement, we have to say in what direction it moved as well as how far. To describe a body’s velocity, we have to know where the body is headed as well as how fast it is going.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4100 AWL/Thomas_ch12p848-905

In the calculus of functions of a single variable, we used our knowledge of lines to study curves in the plane. We investigated tangents and found that, when highly magnified, differentiable curves were effectively linear. To study the calculus of functions of more than one variable in the next chapter, we start with planes and use our knowledge of planes to study the surfaces that are the grap...

متن کامل

4100 AWL/Thomas_ch12p848-905

In studying lines in the plane, when we needed to describe how a line was tilting, we used the notions of slope and angle of inclination. In space, we want a way to describe how a plane is tilting. We accomplish this by multiplying two vectors in the plane together to get a third vector perpendicular to the plane. The direction of this third vector tells us the “inclination” of the plane. The p...

متن کامل

4100 AWL/Thomas_ch13p906-964

As a particle moves along a smooth curve in the plane, turns as the curve bends. Since T is a unit vector, its length remains constant and only its direction changes as the particle moves along the curve. The rate at which T turns per unit of length along the curve is called the curvature (Figure 13.19). The traditional symbol for the curvature function is the Greek letter (“kappa”). k T = dr>d...

متن کامل

4100 AWL/Thomas_ch16p1143-1228

We know how to integrate a function over a flat region in a plane, but what if the function is defined over a curved surface? To evaluate one of these so-called surface integrals, we rewrite it as a double integral over a region in a coordinate plane beneath the surface (Figure 16.38). Surface integrals are used to compute quantities such as the flow of liquid across a membrane or the upward fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005